Wi-Fi is a family of wireless networking technologies, based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access. Wi‑Fi is a trademark of the non-profit Wi-Fi Alliance, which restricts the use of the term Wi-Fi Certified to products that successfully complete interoperability certification testing. As of 2010[update], the Wi-Fi Alliance consisted of more than 375 companies from around the world. As of 2009[update], Wi-Fi-integrated circuit chips shipped approximately 580 million units yearly. Devices that can use Wi-Fi technologies include desktops and laptops, smartphones and tablets, smart TVs, printers, digital audio players, digital cameras, cars and drones.
Wi-Fi uses multiple parts of the IEEE 802 protocol family, and is designed to interwork seamlessly with its wired sibling Ethernet. Compatible devices can network through a wireless access point to each other as well as to wired devices and the Internet. The different versions of Wi-Fi are specified by various IEEE 802.11 protocol standards, with the different radio technologies determining radio bands, and the maximum ranges, and speeds that may be achieved. Wi-Fi most commonly uses the 2.4 gigahertz 120 mm UHF and 5 gigahertz 60 mm SHF ISM radio bands; these bands are subdivided into multiple channels. Channels can be shared between networks but only one transmitter can locally transmit on a channel at any moment in time.
Wi-Fi's wavebands have relatively high absorption and work best for line-of-sight use. Many common obstructions such as walls, pillars, home appliances etc. may greatly reduce range, but this also helps minimize interference between different networks in crowded environments. An access point or hotspot often has a range of about 20 metres 66 feet indoors while some modern access points claim up to a 150-metre 490-foot range outdoors. Hotspot coverage can be as small as a single room with walls that block radio waves, or as large as many square kilometers using many overlapping access points with roaming permitted between them. Over time the speed and spectral efficiency of Wi-Fi has increased. As of 2019, at close range, some versions of Wi-Fi, running on suitable hardware, can achieve speeds of over 1 Gbit/s gigabit per second.
Wi-Fi is potentially more vulnerable to attack than wired networks because anyone within range of a network with a wireless network interface controller can attempt access. To connect to a Wi-Fi network, a user typically needs the network name the SSID and a password. The password is used to encrypt Wi-Fi packets so as to block eavesdroppers. Wi-Fi Protected Access WPA is intended to protect information moving across Wi-Fi networks and includes versions for personal and enterprise networks. Developing security features of WPA have included stronger protections and new security practices.
In 1971, ALOHAnet connected the Great Hawaiian Islands with a UHF wireless packet network. ALOHAnet and the ALOHA protocol were early forerunners to Ethernet, and later the IEEE 802.11 protocols, respectively.
A 1985 ruling by the U.S. Federal Communications Commission released the ISM band for unlicensed use. These frequency bands are the same ones used by equipment such as microwave ovens and are subject to interference. In 1991, NCR Corporation with AT&T Corporation invented the precursor to 802.11, intended for use in cashier systems, under the name WaveLAN.
The Australian radio-astronomer Dr John O'Sullivan with his colleagues Terence Percival, Graham Daniels, Diet Ostry, and John Deane developed a key patent used in Wi-Fi as a by-product of a Commonwealth Scientific and Industrial Research Organisation CSIRO research project, "a failed experiment to detect exploding mini black holes the size of an atomic particle". Dr O'Sullivan and his colleagues are credited with inventing Wi-Fi. In 1992 and 1996, CSIRO obtained patents for a method later used in Wi-Fi to "unsmear" the signal.
The first version of the 802.11 protocol was released in 1997, and provided up to 2 Mbit/s link speeds. This was updated in 1999 with 802.11b to permit 11 Mbit/s link speeds, and this proved popular.
In 1999, the Wi-Fi Alliance formed as a trade association to hold the Wi-Fi trademark under which most products are sold.
Wi-Fi uses a large number of patents held by many different organizations. In April 2009, 14 technology companies agreed to pay CSIRO $1 billion for infringements on CSIRO patents. This led to Australia labeling Wi-Fi as an Australian invention, though this has been the subject of some controversy. CSIRO won a further $220 million settlement for Wi-Fi patent-infringements in 2012, with global firms in the United States required to pay CSIRO licensing rights estimated at an additional $1 billion in royalties. In 2016, the wireless local area network Test Bed was chosen as Australia's contribution to the exhibition A History of the World in 100 Objects held in the National Museum of Australia.
The name Wi-Fi, commercially used at least as early as August 1999, was coined by the brand-consulting firm Interbrand. The Wi-Fi Alliance had hired Interbrand to create a name that was "a little catchier than 'IEEE 802.11b Direct Sequence'." Phil Belanger, a founding member of the Wi-Fi Alliance who presided over the selection of the name "Wi-Fi", has stated that Interbrand invented Wi-Fi as a pun on the word hi-fi high fidelity, a term for high-quality audio technology.
The name Wi-Fi has no further meaning, and was never officially a shortened form of "Wireless Fidelity". Nevertheless, the Wi-Fi Alliance used the advertising slogan "The Standard for Wireless Fidelity" for a short time after the brand name was created, and the Wi-Fi Alliance was also called the "Wireless Fidelity Alliance Inc" in some publications.
Interbrand also created the Wi-Fi logo. The yin-yang Wi-Fi logo indicates the certification of a product for interoperability.
Non-Wi-Fi technologies intended for fixed points, such as Motorola Canopy, are usually described as fixed wireless. Alternative wireless technologies include mobile phone standards, such as 2G, 3G, 4G, and LTE.
The name is sometimes written as WiFi, Wifi, or wifi, but these are not approved by the Wi-Fi Alliance. IEEE is a separate, but related, organization and their website has stated "WiFi is a short name for Wireless Fidelity".
To connect to a Wi-Fi LAN, a computer must be equipped with a wireless network interface controller. The combination of a computer and an interface controller is called a station. Stations are identified by one or more MAC addresses.
Wi-Fi nodes often operate in infrastructure mode where all communications go through a base station. Ad-hoc mode refers to devices talking directly to each other without the need to first talk to an access point.
A service set is the set of all the devices associated with a particular Wi-Fi network. Devices in a service set need not be on the same wavebands or channels. A service set can be local, independent, extended or mesh or a combination.
Each service set has an associated identifier, the 32-byte Service Set Identifier SSID, which identifies the particular network. The SSID is configured within the devices that are considered part of the network.
A Basic Service Set BSS is a group of stations that all share the same wireless channel, SSID, and other wireless settings that have wirelessly connected usually to the same access point.:3.6 Each BSS is identified by a MAC address which is called the BSSID.
The IEEE does not test equipment for compliance with their standards. The non-profit Wi-Fi Alliance was formed in 1999 to fill this void—to establish and enforce standards for interoperability and backward compatibility, and to promote wireless local-area-network technology. As of 2010[update], the Wi-Fi Alliance consists of more than 375 companies and includes 3Com now owned by HPE/Hewlett-Packard Enterprise, Aironet now owned by Cisco, Harris Semiconductor now owned by Intersil, Lucent now owned by Nokia, Nokia and Symbol Technologies now owned by Zebra Technologies. The Wi-Fi Alliance enforces the use of the Wi-Fi brand to technologies based on the IEEE 802.11 standards from the IEEE. This includes wireless local area network WLAN connections, device to device connectivity such as Wi-Fi Peer to Peer aka Wi-Fi Direct, Personal area network PAN, local area network LAN, and even some limited wide area network WAN connections. Manufacturers with membership in the Wi-Fi Alliance, whose products pass the certification process, gain the right to mark those products with the Wi-Fi logo.
Specifically, the certification process requires conformance to the IEEE 802.11 radio standards, the WPA and WPA2 security standards, and the EAP authentication standard. Certification may optionally include tests of IEEE 802.11 draft standards, interaction with cellular-phone technology in converged devices, and features relating to security set-up, multimedia, and power-saving.
Not every Wi-Fi device is submitted for certification. The lack of Wi-Fi certification does not necessarily imply that a device is incompatible with other Wi-Fi devices. The Wi-Fi Alliance may or may not sanction derivative terms, such as Super Wi-Fi, coined by the US Federal Communications Commission FCC to describe proposed networking in the UHF TV band in the US.
1–6 GHz ISM
Equipment frequently support multiple versions of Wi-Fi. To communicate, devices must use a common Wi-Fi version. The versions differ between the radio wavebands they operate on, the radio bandwidth they occupy, the maximum data rates they can support and other details. Some versions permit the use of multiple antennas, which permits greater speeds as well as reduced interference.
Historically, equipment has simply listed the versions of Wi-Fi using the name of the IEEE standard that it supports. In 2018, the Wi-Fi alliance standardized generational numbering so that equipment can indicate that it supports Wi-Fi 4 if the equipment supports 802.11n, Wi-Fi 5 802.11ac and Wi-Fi 6 802.11ax. These generations have a high degree of backward compatibility with previous versions. The alliance have stated that the generational level 4, 5, or 6 can be indicated in the user interface when connected, along with the signal strength.
The full list of versions of Wi-Fi is: 802.11a, 802.11b, 802.11g, 802.11n Wi-Fi 4, 802.11h, 802.11i, 802.11-2007, 802.11-2012, 802.11ac Wi-Fi 5, 802.11ad, 802.11af, 802.11-2016, 802.11ah, 802.11ai, 802.11aj, 802.11aq, 802.11ax Wi-Fi 6, 802.11ay.
Wi-Fi technology may be used to provide local network and Internet access to devices that are within Wi-Fi range of one or more routers that are connected to the Internet. The coverage of one or more interconnected access points hotspots can extend from an area as small as a few rooms to as large as many square kilometres. Coverage in the larger area may require a group of access points with overlapping coverage. For example, public outdoor Wi-Fi technology has been used successfully in wireless mesh networks in London. An international example is Fon.
Wi-Fi provides service in private homes, businesses, as well as in public spaces. Wi-Fi hotspots may be set up either free-of-charge or commercially, often using a captive portal webpage for access. Organizations, enthusiasts, authorities and businesses, such as airports, hotels, and restaurants, often provide free or paid-use hotspots to attract customers, to provide services to promote business in selected areas.
Routers often incorporate a digital subscriber line modem or a cable modem and a Wi-Fi access point, are frequently set up in homes and other buildings, to provide Internet access and internetworking for the structure.
Similarly, battery-powered routers may include a cellular Internet radio modem and Wi-Fi access point. When subscribed to a cellular data carrier, they allow nearby Wi-Fi stations to access the Internet over 2G, 3G, or 4G networks using the tethering technique. Many smartphones have a built-in capability of this sort, including those based on Android, BlackBerry, Bada, iOS iPhone, Windows Phone, and Symbian, though carriers often disable the feature, or charge a separate fee to enable it, especially for customers with unlimited data plans. "Internet packs" provide standalone facilities of this type as well, without use of a smartphone; examples include the MiFi- and WiBro-branded devices. Some laptops that have a cellular modem card can also act as mobile Internet Wi-Fi access points.
Many traditional university campuses in the developed world provide at least partial Wi-Fi coverage. Carnegie Mellon University built the first campus-wide wireless Internet network, called Wireless Andrew, at its Pittsburgh campus in 1993 before Wi-Fi branding originated. By February 1997, the CMU Wi-Fi zone was fully operational. Many universities collaborate in providing Wi-Fi access to students and staff through the Eduroam international authentication infrastructure.
In the early 2000s, many cities around the world announced plans to construct citywide Wi-Fi networks. There are many successful examples; in 2004, Mysore Mysuru became India's first Wi-Fi-enabled city. A company called WiFiyNet has set up hotspots in Mysore, covering the complete city and a few nearby villages.
In 2005, St. Cloud, Florida and Sunnyvale, California, became the first cities in the United States to offer citywide free Wi-Fi from MetroFi. Minneapolis has generated $1.2 million in profit annually for its provider.
In May 2010, London mayor Boris Johnson pledged to have London-wide Wi-Fi by 2012. Several boroughs including Westminster and Islington already had extensive outdoor Wi-Fi coverage at that point.
Officials in South Korea's capital Seoul are moving to provide free Internet access at more than 10,000 locations around the city, including outdoor public spaces, major streets and densely populated residential areas. Seoul will grant leases to KT, LG Telecom, and SK Telecom. The companies will invest $44 million in the project, which was to be completed in 2015.
Wi-Fi positioning systems use the positions of Wi-Fi hotspots to identify a device's location.
Wi-Fi stations communicate by sending each other data packets: blocks of data individually sent and delivered over radio. As with all radio, this is done by the modulating and demodulation of carrier waves. Different versions of Wi-Fi use different techniques, 802.11b uses DSSS on a single carrier, whereas 802.11a, Wi-Fi 4, 5 and 6 use multiple carriers on slightly different frequencies within the channel OFDM.
As with other IEEE 802 LANs, stations come programmed with a globally unique 48-bit MAC address often printed on the equipment so that each Wi-Fi station has a unique address. The MAC addresses are used to specify both the destination and the source of each data packet. Wi-Fi establishes link-level connections, which can be defined using both the destination and source addresses. On the reception of a transmission, the receiver uses the destination address to determine whether the transmission is relevant to the station or should be ignored. A network interface normally does not accept packets addressed to other Wi-Fi stations.
Due to the ubiquity of Wi-Fi and the ever-decreasing cost of the hardware needed to support it, most manufacturers now build Wi-Fi interfaces directly into PC motherboards, eliminating the need for installation of a separate network card.
Channels are used half duplex and can be time-shared by multiple networks. When communication happens on the same channel, any information sent by one computer is locally received by all, even if that information is intended for just one destination. The network interface card interrupts the CPU only when applicable packets are received: the card ignores information not addressed to it. Use of the same channel also means that the data bandwidth is shared, such that, for example, available data bandwidth to each device is halved when two stations are actively transmitting.
A collision happens when two stations attempt to transmit at the same time. They corrupt transmitted data and require stations to re-transmit. The lost data and re-transmission reduce throughput. In the worst case, where multiple active hosts connected with maximum allowed cable length attempt to transmit many short frames, excessive collisions can reduce throughput dramatically. A scheme known as carrier sense multiple access with collision avoidance CSMA/CA governs the way the computers share the channel.
The 802.11 standard provides several distinct radio frequency ranges for use in Wi-Fi communications: 900 MHz, 2.4 GHz, 5 GHz, 5.9 GHz, and 60 GHz bands. Each range is divided into a multitude of channels. Countries apply their own regulations to the allowable channels, allowed users and maximum power levels within these frequency ranges. The ISM band ranges are also often used.
802.11b/g/n can use the 2.4 GHz ISM band, operating in the United States under Part 15 Rules and Regulations. In this frequency band equipment may occasionally suffer interference from microwave ovens, cordless telephones, USB 3.0 hubs, and Bluetooth devices.
Spectrum assignments and operational limitations are not consistent worldwide: Australia and Europe allow for an additional two channels 12, 13 beyond the 11 permitted in the United States for the 2.4 GHz band, while Japan has three more 12–14. In the US and other countries, 802.11a and 802.11g devices may be operated without a license, as allowed in Part 15 of the FCC Rules and Regulations.
802.11a/h/j/n/ac/ax can use the 5 GHz U-NII band, which, for much of the world, offers at least 23 non-overlapping 20 MHz channels rather than the 2.4 GHz ISM frequency band, where the channels are only 5 MHz wide. In general, lower frequencies have better range but have less capacity. The 5 GHz bands are absorbed to a greater degree by common building materials than the 2.4 GHz bands and usually give a shorter range.
As 802.11 specifications evolved to support higher throughput, the protocols have become much more efficient in their use of bandwidth. Additionally, they have gained the ability to aggregate or 'bond' channels together to gain still more throughput where the bandwidth is available. 802.11n allows for double radio spectrum/bandwidth 40 MHz- 8 channels compared to 802.11a or 802.11g 20 MHz. 802.11n can also be set to limit itself to 20 MHz bandwidth to prevent interference in dense communities. In the 5 GHz band, 20 MHz, 40 MHz, 80 MHz, and 160 MHz bandwidth signals are permitted with some restrictions, giving much faster connections.
Wi-Fi is part of the IEEE 802 protocol family. The data is organized into 802.11 frames that are very similar to Ethernet frames at the data link layer, but with extra address fields. MAC addresses are used as network addresses for routing over the LAN.
Wi-Fi's MAC and physical layer PHY specifications are defined by IEEE 802.11 for modulating and receiving one or more carrier waves to transmit the data in the infrared, and 2.4, 3.6, 5, or 60 GHz frequency bands. They are created and maintained by the IEEE LAN/MAN Standards Committee IEEE 802. The base version of the standard was released in 1997, and has had many subsequent amendments. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand. While each amendment is officially revoked when it is incorporated in the latest version of the standard, the corporate world tends to market to the revisions because they concisely denote capabilities of their products. As a result, in the market place, each revision tends to become its own standard.
In addition to 802.11 the IEEE 802 protocol family has specific provisions for Wi-Fi. These are required because Ethernet's cable-based media are not usually shared, whereas with wireless all transmissions are received by all stations within range that employ that radio channel. While Ethernet has essentially negligible error rates, wireless communication media are subject to significant interference. Therefore, accurate transmission is not guaranteed so delivery is therefore a best-effort delivery mechanism. Because of this, for Wi-Fi, the Logical Link Control LLC specified by IEEE 802.2 employs Wi-Fi's media access control MAC protocols to manage retries without relying on higher levels of the protocol stack.
For internetworking purposes Wi-Fi is usually layered as a link layer equivalent to the physical and data link layers of the OSI model below the internet layer of the Internet Protocol. This means that nodes have an associated internet address and, with suitable connectivity, this allows full Internet access.
In infrastructure mode, which is the most common mode used, all communications goes through a base station. For communications within the network, this introduces an extra use of the airwaves, but has the advantage that any two stations that can communicate with the base station can also communicate through the base station, which enormously simplifies the protocols.
Wi-Fi also allows communications directly from one computer to another without an access point intermediary. This is called Wi-Fi transmission. Different types of ad hoc network exist. In the simplest case network nodes must talk directly to each other. In more complex protocols nodes may forward packets, and nodes keep track of how to reach other nodes, even if they move around.
Ad-hoc mode was first invented and realized by Chai Keong Toh in his 1996 invention of Wi-Fi ad-hoc routing, implemented on Lucent WaveLAN 802.11a wireless on IBM ThinkPads over a size nodes scenario spanning a region of over a mile. The success was recorded in Mobile Computing magazine 1999 and later published formally in IEEE Transactions on Wireless Communications, 2002 and ACM SIGMETRICS Performance Evaluation Review, 2001.
This wireless ad hoc network mode has proven popular with multiplayer handheld game consoles, such as the Nintendo DS, PlayStation Portable, digital cameras, and other consumer electronics devices. Some devices can also share their Internet connection using ad hoc, becoming hotspots or "virtual routers".
Similarly, the Wi-Fi Alliance promotes the specification Wi-Fi Direct for file transfers and media sharing through a new discovery- and security-methodology. Wi-Fi Direct launched in October 2010.
Another mode of direct communication over Wi-Fi is Tunneled Direct Link Setup TDLS, which enables two devices on the same Wi-Fi network to communicate directly, instead of via the access point.
An Extended Service Set may be formed by deploying multiple access points that are configured with the same SSID and security settings. Wi-Fi client devices typically connect to the access point that can provide the strongest signal within that service set.
Increasing the number of Wi-Fi access points for a network provides ]
Wi-Fi operational range depends on factors such as the frequency band, radio power output, receiver sensitivity, antenna gain and antenna type as well as the modulation technique. In addition, propagation characteristics of the signals can have a big impact.
At longer distances, and with greater signal absorption, speed is usually reduced.
Compared to cell phones and similar technology, Wi-Fi transmitters are low power devices. In general, the maximum amount of power that a Wi-Fi device can transmit is limited by local regulations, such as FCC Part 15 in the US. Equivalent isotropically radiated power EIRP in the European Union is limited to 20 dBm 100 mW.
To reach requirements for wireless LAN applications, Wi-Fi has higher power consumption compared to some other standards designed to support wireless personal area network PAN applications. For example, Bluetooth provides a much shorter propagation range between 1 and 100m and so in general have a lower power consumption. Other low-power technologies such as ZigBee have fairly long range, but much lower data rate. The high power consumption of Wi-Fi makes battery life in some mobile devices a concern.
An access point compliant with either 802.11b or 802.11g, using the stock omnidirectional antenna might have a range of 100 m 0.062 mi. The same radio with an external semi parabolic antenna 15 dB gain with a similarly equipped receiver at the far end might have a range over 20 miles.
Higher gain rating dBi indicates further deviation generally toward the horizontal from a theoretical, perfect isotropic radiator, and therefore the antenna can project or accept a usable signal further in particular directions, as compared to a similar output power on a more isotropic antenna. For example, an 8 dBi antenna used with a 100 mW driver has a similar horizontal range to a 6 dBi antenna being driven at 500 mW. Note that this assumes that radiation in the vertical is lost; this may not be the case in some situations, especially in large buildings or within a waveguide. In the above example, a directional waveguide could cause the low power 6 dBi antenna to project much further in a single direction than the 8 dBi antenna, which is not in a waveguide, even if they are both driven at 100 mW.
On wireless routers with detachable antennas, it is possible to improve range by fitting upgraded antennas that provide higher gain in particular directions. Outdoor ranges can be improved to many kilometres through the use of high gain directional antennas at the router and remote devices.
Wi-Fi 4 and higher standards allow devices to have multiple antennas on transmitters and receivers. Multiple antennas enable the equipment to exploit multipath propagation on the same frequency bands giving much faster speeds and greater range.
Wi-Fi 4 can more than double the range over previous standards.
The Wi-Fi 5 standard uses the 5 GHz band exclusively, and is capable of multi-station WLAN throughput of at least 1 gigabit per second, and a single station throughput of at least 500 Mbit/s. In the first quarter of 2016, The Wi-Fi Alliance certifies devices compliant with the 802.11ac standard as "Wi-Fi CERTIFIED ac". This standard uses several signal processing techniques such as multi-user MIMO and 4X4 Spatial Multiplexing streams, and large channel bandwidth 160 MHz to achieve the Gigabit throughput. According to a study by IHS Technology, 70% of all access point sales revenue In the first quarter of 2016 came from 802.11ac devices.
With Wi-Fi signals line-of-sight usually works best, but signals can transmit, absorb, reflect, refract, and diffract through and around structures, both manmade and natural.
Due to the complex nature of radio propagation at typical Wi-Fi frequencies, particularly around trees and buildings, algorithms can only approximately predict Wi-Fi signal strength for any given area in relation to a transmitter. This effect does not apply equally to long-range Wi-Fi, since longer links typically operate from towers that transmit above the surrounding foliage.
Mobile use of Wi-Fi over wider ranges is limited, for instance, to uses such as in an automobile moving from one hotspot to another. Other wireless technologies are more suitable for communicating with moving vehicles.
Distance records using non-standard devices include 382 km 237 mi in June 2007, held by Ermanno Pietrosemoli and EsLaRed of Venezuela, transferring about 3 MB of data between the mountain-tops of El Águila and Platillon. The Swedish Space Agency transferred data 420 km 260 mi, using 6 watt amplifiers to reach an overhead stratospheric balloon.
Wi-Fi connections can be blocked or the Internet speed lowered by having other devices in the same area. Wi-Fi protocols are designed to share the wavebands reasonably fairly, and this often works with little to no disruption. To minimize collisions with Wi-Fi and non Wi-Fi devices, Wi-Fi employs Carrier-sense multiple access with collision avoidance CSMA/CA, where transmitters listen before transmitting, and delay transmission of packets if they detect that other devices are active on the channel, or if noise is detected from adjacent channels or from non Wi-Fi sources. Nevertheless, Wi-Fi networks are still susceptible to the hidden node and exposed node problem.
A standard speed Wi-Fi signal occupies five channels in the 2.4 GHz band. Interference can be caused by overlapping channels. Any two channel numbers that differ by five or more, such as 2 and 7, do not overlap no adjacent-channel interference. The oft-repeated adage that channels 1, 6, and 11 are the only non-overlapping channels is, therefore, not accurate. Channels 1, 6, and 11 are the only group of three non-overlapping channels in North America. However, whether the overlap is significant depends on physical spacing. Channels that are four apart interfere a negligible amount-much less than reusing channels which causes co-channel interference-if transmitters are at least a few metres apart. In Europe and Japan where channel 13 is available, using Channels 1, 5, 9, and 13 for 802.11g and 802.11n is recommended.
However, many 2.4 GHz 802.11b and 802.11g access-points default to the same channel on initial startup, contributing to congestion on certain channels. Wi-Fi pollution, or an excessive number of access points in the area, can prevent access and interfere with other devices' use of other access points as well as with decreased signal-to-noise ratio SNR between access points. These issues can become a problem in high-density areas, such as large apartment complexes or office buildings with many Wi-Fi access points. Wi-Fi 6 has greatly improved power control, and suffers less from interference in congested areas.
Other devices use the 2.4 GHz band: microwave ovens, ISM band devices, security cameras, ZigBee devices, Bluetooth devices, video senders, cordless phones, baby monitors, and, in some countries, amateur radio, all of which can cause significant additional interference. It is also an issue when municipalities or other large entities such as universities seek to provide large area coverage. On some 5 GHz bands interference from radar systems can occur in some places. For base stations that support those bands they employ Dynamic Frequency Selection which listens for radar, and if it is found, will not permit a network on that band.
These bands can be used by low power transmitters without a license, and with few restrictions. However, while unintended interference is common, users that have been found to cause deliberate interference particularly for attempting to locally monopolize these bands for commercial purposes have been issued large fines.
Various layer 2 variants of IEEE 802.11 have different characteristics. Across all flavours of 802.11, maximum achievable throughputs are either given based on measurements under ideal conditions or in the layer 2 data rates. This, however, does not apply to typical deployments in which data are transferred between two endpoints of which at least one is typically connected to a wired infrastructure, and the other is connected to an infrastructure via a wireless link.
This means that typically data frames pass an 802.11 WLAN medium and are being converted to 802.3 Ethernet or vice versa.
Due to the difference in the frame header lengths of these two media, the packet size of an application determines the speed of the data transfer. This means that an application that uses small packets e.g., VoIP creates a data flow with a high overhead traffic low goodput.
Other factors that contribute to the overall application data rate are the speed with which the application transmits the packets i.e., the data rate and the energy with which the wireless signal is received. The latter is determined by distance and by the configured output power of the communicating devices.
The same references apply to the attached throughput graphs, which show measurements of UDP throughput measurements. Each represents an average throughput of 25 measurements the error bars are there, but barely visible due to the small variation, is with a specific packet size small or large, and with a specific data rate 10 kbit/s – 100 Mbit/s. Markers for traffic profiles of common applications are included as well. This text and measurements do not cover packet errors but information about this can be found at the above references. The table below shows the maximum achievable application specific UDP throughput in the same scenarios same references again with various different WLAN 802.11 flavours. The measurement hosts have been 25 metres apart from each other; loss is again ignored.
Wi-Fi allows wireless deployment of local area networks LANs. Also, spaces where cables cannot be run, such as outdoor areas and historical buildings, can host wireless LANs. However, building walls of certain materials, such as stone with high metal content, can block Wi-Fi signals.
A Wi-Fi device is a short-range wireless device. Wi-Fi devices are fabricated on RF CMOS integrated circuit RF circuit chips.
Since the early 2000s, manufacturers are building wireless network adapters into most laptops. The price of chipsets for Wi-Fi continues to drop, making it an economical networking option included in ever more devices.
Different competitive brands of access points and client network-interfaces can inter-operate at a basic level of service. Products designated as "Wi-Fi Certified" by the Wi-Fi Alliance are backward compatible. Unlike mobile phones, any standard Wi-Fi device works anywhere in the world.
A wireless access point WAP connects a group of wireless devices to an adjacent wired LAN. An access point resembles a network hub, relaying data between connected wireless devices in addition to a usually single connected wired device, most often an Ethernet hub or switch, allowing wireless devices to communicate with other wired devices.
Wireless adapters allow devices to connect to a wireless network. These adapters connect to devices using various external or internal interconnects such as PCI, miniPCI, USB, ExpressCard, Cardbus, and PC Card. As of 2010, most newer laptop computers come equipped with built in internal adapters.
Wireless routers integrate a Wireless Access Point, Ethernet switch, and internal router firmware application that provides IP routing, NAT, and DNS forwarding through an integrated WAN-interface. A wireless router allows wired and wireless Ethernet LAN devices to connect to a usually single WAN device such as a cable modem, DSL modem or optical modem. A wireless router allows all three devices, mainly the access point and router, to be configured through one central utility. This utility is usually an integrated web server that is accessible to wired and wireless LAN clients and often optionally to WAN clients. This utility may also be an application that is run on a computer, as is the case with as Apple's AirPort, which is managed with the AirPort Utility on macOS and iOS.
Wireless over Wi-Fi. The main standard is the wireless distribution system WDS.
Wireless bridging can connect a wired network to a wireless network. A bridge differs from an access point: an access point typically connects wireless devices to one wired network. Two wireless bridge devices may be used to connect two wired networks over a wireless link, useful in situations where a wired connection may be unavailable, such as between two separate homes or for devices that have no wireless networking capability but have wired networking capability, such as consumer entertainment devices; alternatively, a wireless bridge can be used to enable a device that supports a wired connection to operate at a wireless networking standard that is faster than supported by the wireless network connectivity feature external dongle or inbuilt supported by the device e.g., enabling Wireless-N speeds up to the maximum supported speed on the wired Ethernet port on both the bridge and connected devices including the wireless access point for a device that only supports Wireless-G. A dual-band wireless bridge can also be used to enable 5 GHz wireless network operation on a device that only supports 2.4 GHz wireless and has a wired Ethernet port.
Wireless range-extenders or wireless repeaters can extend the range of an existing wireless network. Strategically placed range-extenders can elongate a signal area or allow for the signal area to reach around barriers such as those pertaining in L-shaped corridors. Wireless devices connected through repeaters suffer from an increased latency for each hop, and there may be a reduction in the maximum available data throughput. In addition, the effect of additional users using a network employing wireless range-extenders is to consume the available bandwidth faster than would be the case whereby a single user migrates around a network employing extenders. For this reason, wireless range-extenders work best in networks supporting low traffic throughput requirements, such as for cases whereby a single user with a Wi-Fi equipped tablet migrates around the combined extended and non-extended portions of the total connected network. Also, a wireless device connected to any of the repeaters in the chain has data throughput limited by the "weakest link" in the chain between the connection origin and connection end. Networks using wireless extenders are more prone to degradation from interference from neighboring access points that border portions of the extended network and that happen to occupy the same channel as the extended network.
The security standard, Wi-Fi Protected Setup, allows embedded devices with limited graphical user interface to connect to the Internet with ease. Wi-Fi Protected Setup has 2 configurations: The Push Button configuration and the PIN configuration. These embedded devices are also called The Internet of Things and are low-power, battery-operated embedded systems. A number of Wi-Fi manufacturers design chips and modules for embedded Wi-Fi, such as GainSpan.
Increasingly in the last few years particularly as of 2007[update], embedded Wi-Fi modules have become available that incorporate a real-time operating system and provide a simple means of wirelessly enabling any device that can communicate via a serial port. This allows the design of simple monitoring devices. An example is a portable ECG device monitoring a patient at home. This Wi-Fi-enabled device can communicate via the Internet.
These Wi-Fi modules are designed by OEMs so that implementers need only minimal Wi-Fi knowledge to provide Wi-Fi connectivity for their products.
In June 2014, Texas Instruments introduced the first ARM Cortex-M4 microcontroller with an onboard dedicated Wi-Fi MCU, the SimpleLink CC3200. It makes embedded systems with Wi-Fi connectivity possible to build as single-chip devices, which reduces their cost and minimum size, making it more practical to build wireless-networked controllers into inexpensive ordinary objects.
The main issue with wireless network security is its simplified access to the network compared to traditional wired networks such as Ethernet. With wired networking, one must either gain access to a building physically connecting into the internal network, or break through an external firewall. To access Wi-Fi, one must merely be within the range of the Wi-Fi network. Most business networks protect sensitive data and systems by attempting to disallow external access. Enabling wireless connectivity reduces security if the network uses inadequate or no encryption.
An attacker who has gained access to a Wi-Fi network router can initiate a DNS spoofing attack against any other user of the network by forging a response before the queried DNS server has a chance to reply.
A common measure to deter unauthorized users involves hiding the access point's name by disabling the SSID broadcast. While effective against the casual user, it is ineffective as a security method because the SSID is broadcast in the clear in response to a client SSID query. Another method is to only allow computers with known MAC addresses to join the network, but determined eavesdroppers may be able to join the network by spoofing an authorized address.
AirSnort or Aircrack-ng can quickly recover WEP encryption keys. Because of WEP's weakness the Wi-Fi Alliance approved Wi-Fi Protected Access WPA which uses TKIP. WPA was specifically designed to work with older equipment usually through a firmware upgrade. Though more secure than WEP, WPA has known vulnerabilities.
The more secure WPA2 using Advanced Encryption Standard was introduced in 2004 and is supported by most new Wi-Fi devices. WPA2 is fully compatible with WPA. In 2017, a flaw in the WPA2 protocol was discovered, allowing a key replay attack, known as KRACK.
A flaw in a feature added to Wi-Fi in 2007, called Wi-Fi Protected Setup WPS, let WPA and WPA2 security be bypassed, and effectively broken in many situations. The only remedy as of late 2011 was to turn off Wi-Fi Protected Setup, which is not always possible.
Virtual Private Networks can be used to improve the confidentiality of data carried through Wi-Fi networks, especially public Wi-Fi networks.
The older wireless encryption-standard, Wired Equivalent Privacy WEP, has been shown easily breakable even when correctly configured. Wi-Fi Protected Access WPA and WPA2 encryption, which became available in devices in 2003, aimed to solve this problem. Wi-Fi access points typically default to an encryption-free open mode. Novice users benefit from a zero-configuration device that works out-of-the-box, but this default does not enable any wireless security, providing open wireless access to a LAN. To turn security on requires the user to configure the device, usually via a software graphical user interface GUI. On unencrypted Wi-Fi networks connecting devices can monitor and record data including personal information. Such networks can only be secured by using other means of protection, such as a VPN or secure Hypertext Transfer Protocol over Transport Layer Security HTTPS.
Wi-Fi Protected Access encryption WPA2 is considered secure, provided a strong passphrase is used. In 2018, WPA3 was announced as a replacement for WPA2, increasing security; it rolled out on June 26.
Piggybacking refers to access to a wireless Internet connection by bringing one's own computer within the range of another's wireless connection, and using that service without the subscriber's explicit permission or knowledge.
During the early popular adoption of ] to cultivate wireless community networks, particularly since people on average use only a fraction of their downstream bandwidth at any given time.
Recreational logging and mapping of other people's access points has become known as wardriving. Indeed, many access points are intentionally installed without security turned on so that they can be used as a free service. Providing access to one's Internet connection in this fashion may breach the Terms of Service or contract with the ISP. These activities do not result in sanctions in most jurisdictions; however, legislation and case law differ considerably across the world. A proposal to leave graffiti describing available services was called warchalking.
Piggybacking often occurs unintentionally – a technically unfamiliar user might not change the default "unsecured" settings to their access point and operating systems can be configured to connect automatically to any available wireless network. A user who happens to start up a laptop in the vicinity of an access point may find the computer has joined the network without any visible indication. Moreover, a user intending to join one network may instead end up on another one if the latter has a stronger signal. In combination with automatic discovery of other network resources see DHCP and Zeroconf this could possibly lead wireless users to send sensitive data to the wrong middle-man when seeking a destination see man-in-the-middle attack. For example, a user could inadvertently use an unsecure network to log into a website, thereby making the login credentials available to anyone listening, if the website uses an unsecure protocol such as plain HTTP without TLS.
An unauthorized user can obtain security information factory preset passphrase and/or Wi-Fi Protected Setup PIN from a label on a wireless access point can use this information or connect by the Wi-Fi Protected Setup pushbutton method to commit unauthorized and/or unlawful activities.
The World Health Organization WHO says, "no health effects are expected from exposure to RF fields from base stations and wireless networks", but notes that they promote research into effects from other RF sources. Although the WHO's International Agency for Research on Cancer IARC later classified radio-frequency electromagnetic fields EMFs as "possibly carcinogenic to humans Group 2B" a category used when "a causal association is considered credible, but when chance, bias or confounding cannot be ruled out with reasonable confidence", this classification was based on risks associated with wireless phone use rather than Wi-Fi networks.
The United Kingdom's Health Protection Agency reported in 2007 that exposure to Wi-Fi for a year results in the "same amount of radiation from a 20-minute mobile phone call".
A review of studies involving 725 people who claimed electromagnetic hypersensitivity, "...suggests that 'electromagnetic hypersensitivity' is unrelated to the presence of an EMF, although more research into this phenomenon is required."
A number of other "wireless" technologies provide alternatives to Wi-Fi in some cases:
Some alternatives are "no new wires", re-using existing cable:
Several wired technologies for computer networking provide, in some cases, viable alternatives—in particular: